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Time domain approach

{Xt : t ∈ Z} - APC, when

µX (t) = E(Xt)

and the autocovariance function

BX (t , τ) = cov(Xt , Xt+τ )

are almost periodic function at t for every τ ∈ Z.
Put BX (t , τ) =

∑
λ∈Λ

a(λ, τ)eiλτ

Time domain approach (µX (t) ≡ 0):

ân(λ, τ) =
1

n − τ

n−τ∑

t=1

X (t + τ)X (t)e−iλt



Frequency domain approach

Harmonizable time series {X (t) : t ∈ Z}

X (t) =

2π∫

0

eiξtZ (dξ).

Spectral bimeasure is defined as

R((a, b] × (c, d ]) = E [(Z (b) − Z (a))(Z (d) − Z (c))],

with a support

S =
⋃

λ∈Λ

{(ξ1, ξ2) ∈ (0, 2π]2 : ξ2 = ξ1 ± λ}.



Spectral density estimator

Ĝn(ν, ω) =
1

2πn

n∑

t=1

n∑

s=1

Kn(s − t)XtXse−iνteiωs. (1)
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Simulation example
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Time series Subsampling test for ÈΓHΝ,ΩLÈ2

Xt = (2 + sin(2πt/4))Yt−1 + Yt ,
where Yt are i.i.d. from N(0, 1).



Nonstationary counting process

X - counting process on [0, T ].
Intensity of X is of the form

λ(t) = λ0(t)Y (t) , t ∈ [0, T ]

λ0(t) – nonnegative deterministic periodic function

Y (t) – nonnegative stochastic process



Nonstationary counting process

Sieve estimator of λ0(t)

The histogram maximum likelihood estimator of the periodic
λ0(t) function is of the form:

λ̂n(s) =

∑n
k=1 Xk (Bs

n)∑n
k=1

∫
Bs

n
Yk (u)du

1Dn(s), s ∈ [0, P],

where s ∈ Bs
n is the interval of the length P/b that contains s

and

Dn = {
n∑

k=1

∫

Bs
n

Yk (u)du > 0}.



Real data example

Incoming packets number in one hour non-overlapping bins -
border between the network of University of Waikato and the
internet provider.



Limit results



Asymptotic normality, PC time domain domain

We have
√

n (ân(λ, τ) − a(λ, τ))
d−−−→ N2(0, Σ), (2)

where

Σ =

[
σ11 σ12

σ21 σ22

]
,

σ11 =
1
T

T∑

s=1

∞∑

k=−∞
BZτ

(s, k) cos(λs) cos(λk),

σ22 =
1
T

T∑

s=1

∞∑

k=−∞
BZτ

(s, k) sin(λs) sin(λk),

σ12 = σ21 =
1
T

T∑

s=1

∞∑

k=−∞
BZτ

(s, k) cos(λs) sin(λk),

and Z (t , τ) = X (t)X (t + τ) − BX (t , τ),
BZτ

(s, k) = Cov (Z (s, τ), Z (s + k , τ)).



Asymptotic covariance, APC case

Lemma (Lenart 2008)
If

(i) there exists δ > 0 such that supt∈Z
‖Xt‖6+3δ ≤ ∆ < ∞,

(ii)
∞∑

k=1
k2α(k)

δ

2+δ ≤ K < ∞,

(iii) Kn(s − t) = I{|s − t | ≤ wn} + additional regularity
assumptions

then we have a convergence

lim
n→∞

n
wn

cov
(

Ĝn(ν1, ω1), Ĝn(ν2, ω2)
)

= P(ν1, ν2)P(ω1, ω2)

+P(ν1, 2π − ω2)P(ν2, 2π − ω1),

for any (ν1, ω2), (ν2, ω2) ∈ (0, 2π]2.



Asymptotic normality, APC case

Theorem (Lenart 2008)
If

(i) there exists δ > 0 such that supt∈Z
‖Xt‖6+3δ≤ ∆ < ∞,

(ii) wn = O(nκ) for some κ ∈ (0, δ/(4 + 4δ),

(iii)
∞∑

h=1
h2rα(h)

δ

2(r+1)+δ < ∞, where r is the integer such that

r > max
{

1 + δ, 1−κ
4κ

, κ(1+δ)
δ−2κ(1+δ)

}
,

then √
n

wn

(
Ĝn(ν, ω) − P(ν, ω)

)
−→ N(0, Σ(ν, ω)),

where matrix Σ(ν, ω) can be obtained by previous Theorem.



Asymptotic normality, counting process case

Theorem (Dudek, 2008)
If

(i) The Y process is periodically correlated with period P and
its mean function E(Y (s)) is bounded away from zero.

(ii) Process Y has the third moment bounded.

(iii) Process Y is α–mixing with α(k) = o(k−3).

(iv) Each period P is divided into b parts, where b = O
(√

n
)
.

(v) The periodic λ0 function (with the period length equal to P)
and EY (t) fulfill the Lipschitz condition on [0, P]

then √
n
b

(
λ̂n(s) − λ0(s)

)
⇒ N

(
0,

λ0(s)

E(Y (s))

)
.



Why resampling?

* APC time series case: too complicated asymptotic
covariance matrix

* periodic counting process case: slow convergence, need
for simultaneous confidence bands



Subsampling for Fourier coefficient of autocovariance
function

Consistency holds for the estimator θ̂n = |ân(λ, τ)|. Let

Jn(x , P) = ProbP
(√

n(|ân(λ, τ)| − |a(λ, τ)|) ≤ x
)
.

By CLT for ân(λ, τ) and the delta method we have

Jn(P)
d−−−→ J(P).

We define correspondingly subsampling distribution in the form

Ln,b(P) =
1

n − b + 1

n−b+1∑

t=1

1{
√

b(|ân,b,t(λ, τ)| − |ân(λ, τ)|) ≤ x}



Subsampling for Fourier coefficient of autocovariance
function

Theorem (Lenart, Leśkow, Synowiecki, 2008)

Let {X (t) : t ∈ Z} be APC time series. Assume that

(i) b → ∞ but b/n → 0,

(ii) supt E |X (t)|4+4δ < ∞,

(iii)
∞∑

k=0
(k + 1)2α(k)

δ

4+δ < ∞,

(iv) the function
V (t , τ1, τ2, τ3) = E

(
X (t)X (t + τ1)X (t + τ2)X (t + τ3)

)
is

almost periodic.

Then subsampling is consistent, which means that

sup
x

|Jn(x , P) − Ln,b(x)| P−−−→ 0.



Application of subsampling procedure for PC time
series

Testing problem:

H0 : B(·, τ) is periodic with period T0,

H1 : B(·, τ) is periodic with period T1.

Test statistics (Lenart, Leskow, Synowiecki, 2008):

Un(τ) =
√

n


 ∑

λ∈ΛT1
\ΛT0

|ân(λ, τ)|


 .



Application of subsampling procedure for PC time
series

Under H0:

Un(τ)
d−−−→ J.

Under H1:
Un(τ) −→ ∞.

Large values of Un(τ) suggest that hypothesis H1 is true. The
rejection area is of the form [c1−α,∞). In order to find c1−α

subsampling may be applied.



Application of subsampling procedure for PC time
series
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(a) Probability of rejection H0 pro-
vided that H0 is true.
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(b) Probability of rejection H0 pro-
vided that H1 is true.

Figure: Monte Carlo approximations of test errors.



Consistency of MBB for (almost) periodic time series

Theorem (Synowiecki, 2007)

Let {Xt : t ∈ Z} be APC and α-mixing, let (X ∗
1 , . . . , X ∗

n ) be MBB
sample, b → ∞ ale b/n → 0. Assume that

(i) Λ = {λ : [0, 2π) : Mt(EXte−iλt) 6= 0} is finite,

(ii) autocovariance is uniformly summable

(iii) sups=1,...,n−b+1 E
(

1√
b

∑s+b−1
t=s (Xt − EXt)

)4
< K

(iv) CLT holds, i.e.
√

n
(

X n − Mt(EXt)
)

d−−−→ N (0, σ2)

Then MBB procedure is consistent, which means that

Var∗(
√

n X
∗
n)

P−−−→ σ2

and

sup
x∈R

∣∣∣P
(√

n
(

X n − µ
)
≤ x

)
− P∗

(√
n
(

X
∗
n − E∗X

∗
n

)
≤ x

)∣∣∣ p→ 0.



Consistency of subsampling - APC case, spectral
coherence

Theorem (Lenart, 2008)

Under regularity conditions the subsampling confidence
intervals for coherence are consistent

P
(√

n/wn (|γ̂n(ν, ω)| − |γ(ν, ω)|) ≤ cγ
n,b(1 − α)

)
−→ 1 − α,

where b = b(n) → ∞, and b/n → 0,

cγ
n,b(1 − α) = inf{x : Lγ

n,b(x) ≥ 1 − α}.

Lγ
n,b(x)=

1
n−b+1

n−b+1∑

t=1

1{
√

b/wb(|γ̂n,b,t(ν, ω)| − |γ̂n(ν, ω)|)≤x}.



Consistency of bootstrap - counting process case

Theorem (Dudek, 2008)

sup
u∈R

∣∣∣∣∣P
∗
(√

n
b

(λ̂∗
n(s) − λ̂n(s)) ≤ u

)

−P

(√
n
b

(λ̂n(s) − λ0(s)) ≤ u

)∣∣∣∣∣ = oP(1),

where

λ̂∗
n(s) =

∑n
k=1 X ∗

k (Bs
n)∑n

k=1

∫
Bs

n
Yk (u)du

1Dn(s).



Real data example - counting process case

Estimator of the intensity of the number of packets being
received by one host together with 90% confidence region:
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Future directions of research

* Subsampling - optimal selection of block size

* Resampling in GACS signals

* nonstationary random fields
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