Resampling for nonstationary stochastic models

Jacek Leśkow

Anna Dudek Łukasz Lenart Rafał Synowiecki

Plan of the presentation

- * Nonstationary stochastic models
 - PC and APC models, time domain
 - PC and APC frequency domain
 - periodic counting process models

《曰》《聞》《臣》《臣》

- * Limit results
- * Why resampling?
- * Selected results
- * Future directions of research

Time domain approach

 $\{X_t : t \in \mathbb{Z}\}$ - APC, when

$$\mu_X(t) = E(X_t)$$

and the autocovariance function

$$B_X(t, au) = \operatorname{cov}(X_t, X_{t+ au})$$

are almost periodic function at *t* for every $\tau \in \mathbb{Z}$. Put $B_X(t,\tau) = \sum_{\lambda \in \Lambda} a(\lambda,\tau) e^{i\lambda\tau}$ Time domain approach ($\mu_X(t) \equiv 0$):

$$\hat{a}_n(\lambda,\tau) = \frac{1}{n-\tau} \sum_{t=1}^{n-\tau} X(t+\tau) X(t) e^{-i\lambda t}$$

▲ロ▶▲圖▶▲필▶▲필▶ 三三 のへで

Frequency domain approach

Harmonizable time series $\{X(t) : t \in \mathbb{Z}\}$

$$X(t) = \int_{0}^{2\pi} e^{i\xi t} Z(d\xi).$$

Spectral bimeasure is defined as

$$R((a,b]\times(c,d])=E[(Z(b)-Z(a))(Z(d)-Z(c))],$$

with a support

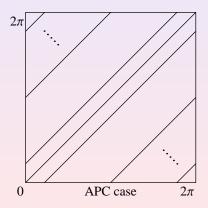
$$S = \bigcup_{\lambda \in \Lambda} \{ (\xi_1, \xi_2) \in (0, 2\pi]^2 : \xi_2 = \xi_1 \pm \lambda \}.$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ▲ ● ▲ ●

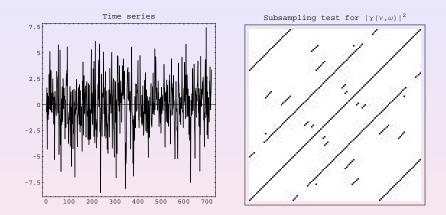
Spectral density estimator

$$\hat{G}_{n}(\nu,\omega) = \frac{1}{2\pi n} \sum_{t=1}^{n} \sum_{s=1}^{n} K_{n}(s-t) X_{t} X_{s} e^{-i\nu t} e^{i\omega s}.$$
 (1)

Support lines



Simulation example



 $X_t = (2 + \sin(2\pi t/4)) Y_{t-1} + Y_t$, where Y_t are i.i.d. from N(0, 1). X - counting process on [0, T]. Intensity of X is of the form

$$\lambda(t) = \lambda_0(t) Y(t) \qquad , \qquad t \in [0, T]$$

λ₀(t) – nonnegative deterministic periodic function
 Y(t) – nonnegative stochastic process

Sieve estimator of $\lambda_0(t)$

The histogram maximum likelihood estimator of the periodic $\lambda_0(t)$ function is of the form:

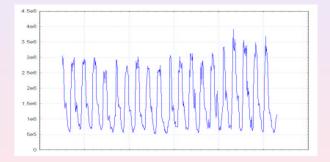
$$\widehat{\lambda}_n(s) = rac{\sum_{k=1}^n X_k(B_n^s)}{\sum_{k=1}^n \int_{B_n^s} Y_k(u) du} \mathbf{1}_{D_n}(s), \quad s \in [0, P],$$

where $s \in B_n^s$ is the interval of the length P/b that contains s and

$$D_n=\{\sum_{k=1}^n\int_{B_n^s}Y_k(u)du>0\}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Incoming packets number in one hour non-overlapping bins border between the network of University of Waikato and the internet provider.



Limit results

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんの

Asymptotic normality, PC time domain domain

We have

$$\sqrt{n}\left(\hat{a}_n(\lambda,\tau) - a(\lambda,\tau)\right) \xrightarrow{d} \mathcal{N}_2(0,\Sigma), \tag{2}$$

(日)

where

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix},$$

$$\sigma_{11} = \frac{1}{T} \sum_{s=1}^{T} \sum_{k=-\infty}^{\infty} B_{Z_{\tau}}(s,k) \cos(\lambda s) \cos(\lambda k),$$

$$\sigma_{22} = \frac{1}{T} \sum_{s=1}^{T} \sum_{k=-\infty}^{\infty} B_{Z_{\tau}}(s,k) \sin(\lambda s) \sin(\lambda k),$$

$$\sigma_{12} = \sigma_{21} = \frac{1}{T} \sum_{s=1}^{T} \sum_{k=-\infty}^{\infty} B_{Z_{\tau}}(s,k) \cos(\lambda s) \sin(\lambda k),$$

and $Z(t, \tau) = X(t)X(t + \tau) - B_X(t, \tau)$, $B_{Z_{\tau}}(s, k) = Cov(Z(s, \tau), Z(s + k, \tau))$.

Lemma (Lenart 2008)

(i) there exists $\delta > 0$ such that $\sup_{t \in \mathbb{Z}} \|X_t\|_{6+3\delta} \le \Delta < \infty$,

(ii)
$$\sum_{k=1}^{\infty} k^2 \alpha(k)^{\frac{\delta}{2+\delta}} \leq K < \infty$$
,

(iii) $K_n(s-t) = I\{|s-t| \le w_n\}$ + additional regularity assumptions

then we have a convergence

$$\lim_{n\to\infty}\frac{n}{w_n}cov\left(\hat{G}_n(\nu_1,\omega_1),\hat{G}_n(\nu_2,\omega_2)\right)=P(\nu_1,\nu_2)\overline{P(\omega_1,\omega_2)}+P(\nu_1,2\pi-\omega_2)\overline{P(\nu_2,2\pi-\omega_1)},$$

for any $(\nu_1, \omega_2), (\nu_2, \omega_2) \in (0, 2\pi]^2$.

Asymptotic normality, APC case

Theorem (Lenart 2008)

lf

- (i) there exists $\delta > 0$ such that $\sup_{t \in \mathbb{Z}} ||X_t||_{6+3\delta} \le \Delta < \infty$, (ii) $w_n = O(n^{\kappa})$ for some $\kappa \in (0, \delta/(4+4\delta)$,
- (iii) $\sum_{h=1}^{\infty} h^{2r} \alpha(h)^{\frac{\delta}{2(r+1)+\delta}} < \infty$, where *r* is the integer such that $r > \max\left\{1 + \delta, \frac{1-\kappa}{4\kappa}, \frac{\kappa(1+\delta)}{\delta 2\kappa(1+\delta)}\right\}$,

then

$$\sqrt{\frac{n}{w_n}}\left(\hat{\mathbf{G}}_n(\nu,\omega)-\mathbf{P}(\nu,\omega)\right)\longrightarrow N(\mathbf{0},\boldsymbol{\Sigma}(\nu,\omega)),$$

where matrix $\Sigma(\nu, \omega)$ can be obtained by previous Theorem.

Theorem (Dudek, 2008)

- (i) The Y process is periodically correlated with period P and its mean function E(Y(s)) is bounded away from zero.
- (ii) Process Y has the third moment bounded.
- (iii) Process Y is α -mixing with $\alpha(k) = o(k^{-3})$.
- (iv) Each period *P* is divided into *b* parts, where $b = O(\sqrt{n})$.
- (v) The periodic λ_0 function (with the period length equal to *P*) and *EY*(*t*) fulfill the Lipschitz condition on [0, *P*]

then

$$\sqrt{\frac{n}{b}}\left(\widehat{\lambda}_n(s) - \lambda_0(s)\right) \Rightarrow N\left(0, \frac{\lambda_0(s)}{E(Y(s))}\right).$$

* APC time series case: too complicated asymptotic covariance matrix

 periodic counting process case: slow convergence, need for simultaneous confidence bands

Subsampling for Fourier coefficient of autocovariance function

Consistency holds for the estimator $\hat{\theta}_n = |\hat{a}_n(\lambda, \tau)|$. Let

$$J_n(\mathbf{x}, \mathbf{P}) = \mathsf{Prob}_{\mathbf{P}}(\sqrt{n}(|\hat{\mathbf{a}}_n(\lambda, \tau)| - |\mathbf{a}(\lambda, \tau)|) \le \mathbf{x}).$$

By CLT for $\hat{a}_n(\lambda, \tau)$ and the delta method we have

$$J_n(P) \xrightarrow{d} J(P).$$

We define correspondingly subsampling distribution in the form

$$L_{n,b}(P) = \frac{1}{n-b+1} \sum_{t=1}^{n-b+1} \mathbf{1}\{\sqrt{b}(|\hat{a}_{n,b,t}(\lambda,\tau)| - |\hat{a}_{n}(\lambda,\tau)|) \le x\}$$

Subsampling for Fourier coefficient of autocovariance function

Theorem (Lenart, Leśkow, Synowiecki, 2008)

Let $\{X(t) : t \in \mathbb{Z}\}$ be APC time series. Assume that

(i)
$$b \to \infty$$
 but $b/n \to 0$,

(ii)
$$\sup_t E|X(t)|^{4+4\delta} < \infty$$
,

(iii)
$$\sum_{k=0}^{\infty} (k+1)^2 \alpha(k)^{\frac{\delta}{4+\delta}} < \infty$$
,

(iv) the function

 $V(t, \tau_1, \tau_2, \tau_3) = E(X(t)X(t + \tau_1)X(t + \tau_2)X(t + \tau_3))$ is almost periodic.

Then subsampling is consistent, which means that

$$\sup_{x} |J_n(x, P) - L_{n,b}(x)| \xrightarrow{P} 0.$$

E

Testing problem:

 $H_0: B(\cdot, \tau)$ is periodic with period T_0 , $H_1: B(\cdot, \tau)$ is periodic with period T_1 .

Test statistics (Lenart, Leskow, Synowiecki, 2008):

$$U_n(\tau) = \sqrt{n} \left(\sum_{\lambda \in \Lambda_{\tau_1} \setminus \Lambda_{\tau_0}} |\hat{a}_n(\lambda, \tau)| \right).$$

◆ロ▶ ◆舂▶ ◆恵▶ ◆恵▶ → 恵・ 釣々で

Application of subsampling procedure for PC time series

Under *H*₀:

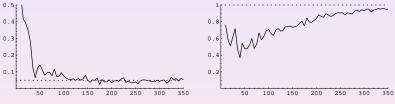
$$U_n(\tau) \xrightarrow{d} J.$$

Under H_1 :

 $U_n(\tau) \longrightarrow \infty.$

Large values of $U_n(\tau)$ suggest that hypothesis H_1 is true. The rejection area is of the form $[c_{1-\alpha}, \infty)$. In order to find $c_{1-\alpha}$ subsampling may be applied.

Application of subsampling procedure for PC time series



(a) Probability of rejection H_0 provided that H_0 is true.

(b) Probability of rejection H_0 provided that H_1 is true.

< □ > < □ > < □ > < □ >

Figure: Monte Carlo approximations of test errors.

Consistency of MBB for (almost) periodic time series

Theorem (Synowiecki, 2007)

Let $\{X_t : t \in \mathbb{Z}\}$ be APC and α -mixing, let (X_1^*, \ldots, X_n^*) be MBB sample, $b \to \infty$ ale $b/n \to 0$. Assume that

- (i) $\Lambda = \{\lambda : [0, 2\pi) : M_t(EX_t e^{-i\lambda t}) \neq 0\}$ is finite,
- (ii) autocovariance is uniformly summable

(iii)
$$\sup_{s=1,...,n-b+1} E\left(\frac{1}{\sqrt{b}}\sum_{t=s}^{s+b-1}(X_t - EX_t)\right)^4 < K$$

(iv) CLT holds, i.e. $\sqrt{n}\left(\overline{X}_n - M_t(EX_t)\right) \xrightarrow{d} \mathcal{N}(0,\sigma^2)$
Then MBB procedure is consistent, which means that

$$Var^*(\sqrt{n} \,\overline{X}_n^*) \xrightarrow{P} \sigma^2$$

and

$$\sup_{\boldsymbol{x}\in\mathbb{R}}\left|P\left(\sqrt{n}\left(\overline{\boldsymbol{X}}_{n}-\mu\right)\leq\boldsymbol{x}\right)-P^{*}\left(\sqrt{n}\left(\overline{\boldsymbol{X}}_{n}^{*}-\boldsymbol{E}^{*}\overline{\boldsymbol{X}}_{n}^{*}\right)\leq\boldsymbol{x}\right)\right|\xrightarrow{\boldsymbol{p}}0.$$

Consistency of subsampling - APC case, spectral coherence

Theorem (Lenart, 2008)

Under regularity conditions the subsampling confidence intervals for coherence are consistent

$${\mathcal P}\left(\sqrt{n/w_n}\left(|\hat{\gamma}_n(
u,\omega)|-|\gamma(
u,\omega)|
ight)\leq {\mathcal C}_{n,b}^\gamma(1-lpha)
ight)\longrightarrow 1-lpha,$$

where $b = b(n) \rightarrow \infty$, and $b/n \rightarrow 0$,

$$\boldsymbol{c}_{\boldsymbol{n},\boldsymbol{b}}^{\gamma}(\boldsymbol{1}-\alpha) = \inf\{\boldsymbol{x}: \ \boldsymbol{L}_{\boldsymbol{n},\boldsymbol{b}}^{\gamma}(\boldsymbol{x}) \geq \boldsymbol{1}-\alpha\}.$$

$$L_{n,b}^{\gamma}(\mathbf{x}) = \frac{1}{n-b+1} \sum_{t=1}^{n-b+1} \{\sqrt{b/w_b}(|\hat{\gamma}_{n,b,t}(\nu,\omega)| - |\hat{\gamma}_n(\nu,\omega)|) \leq \mathbf{x}\}.$$

Consistency of bootstrap - counting process case

Theorem (Dudek, 2008)

$$\begin{split} \sup_{u \in R} \left| P^* \left(\sqrt{\frac{n}{b}} (\widehat{\lambda}_n^*(s) - \widehat{\lambda}_n(s)) \le u \right) \right. \\ \left. - P \left(\sqrt{\frac{n}{b}} (\widehat{\lambda}_n(s) - \lambda_0(s)) \le u \right) \right| &= o_P(1) \end{split}$$

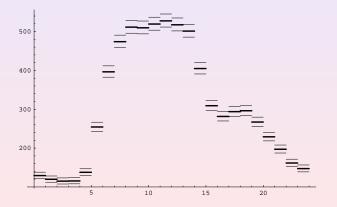
where

$$\widehat{\lambda}_n^*(s) = \frac{\sum_{k=1}^n X_k^*(B_n^s)}{\sum_{k=1}^n \int_{B_n^s} Y_k(u) du} \mathbf{1}_{D_n}(s).$$

▲口▶▲□▶▲□▶▲□▶▲□▶ ● のぐら

Real data example - counting process case

Estimator of the intensity of the number of packets being received by one host together with 90% confidence region:



◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ ���

Future directions of research

* Subsampling - optimal selection of block size

(日)

- * Resampling in GACS signals
- * nonstationary random fields

- Chan V., Lahiri S., Meeker W. (2004) Block bootstrap estimation of the distribution of cumulative outdoor degradation **Technometrics**
- Dudek A., Goćwin M., Leśkow J., (2008) Simultaneous confidence bands for periodic hazard function, submitted
- Lenart Ł., Leśkow J., Synowiecki R. (2007)

Subsampling in testing autocovariance for periodically correlated time series

Journal of Time Series Analysis, to appear

Lenart Ł., (2008)

Asymptotic properties of periodogram for almost periodically correlated time series

Probability and Mathematical Statistics, to appear

Politis D. (2001)

Resampling time series with seasonal components Proceedings of the 33rd Symposium on the Interface of Computing Science and Statistics

Synowiecki R. (2007)

Consistency and application of MBB for nonstationary time series with periodic and almost periodic structure *Bernoulli*

< ロ > < 圖 > < 圖 > < 필 > .

Thank you for your attention

★ 御 ▶ ★ 国 ▶ ★ 国 ▶ →

臣